The Internal Combustion Engine as a Low-Cost Soil Vapor Treatment Technology

Prepared by Steve R. Archabal *Remediation Service, Intl.,* a division of *Innovative Environmental Solutions, LLC*

The data contained herein was previously published by Steven R. Archabal (June, 1997) while employed with Parsons Engineering Science, Inc. under contract with the Air Force Center for Environmental Excellence (AFCEE) Technology Transfer Division

Technology in Support of the Environment

AFCEE/ERT Demonstration Project

AFCEE/ERT Demonstration Project

Evaluate low-cost soil vapor extraction (SVE) technologies and strategies for treatment of petroleum hydrocarbons in soils

- AFCEE/ERT Demonstration Project
- Evaluate low-cost soil vapor extraction (SVE) technologies and strategies for treatment of petroleum hydrocarbons in soils
- Evaluate internal combustion engine (ICE) for SVE and off-gas treatment

- AFCEE/ERT Demonstration Project
- Evaluate low-cost soil vapor extraction (SVE) technologies and strategies for treatment of petroleum hydrocarbons in soils
- Evaluate internal combustion engine (ICE) for SVE and off-gas treatment
- Develop site-specific and summary reports

- AFCEE/ERT Demonstration Project
- Evaluate low-cost soil vapor extraction (SVE) technologies and strategies for treatment of petroleum hydrocarbons in soils
- Evaluate internal combustion engine (ICE) for SVE and off-gas treatment
- Develop site-specific and summary reports
- Compare ICE to traditional approaches

Demonstration Sites

Conceptual Model of SVE using ICE

Combines vapor extraction and contaminant vapor destruction in a single technology

- Combines vapor extraction and contaminant vapor destruction in a single technology
- Uses a modified automobile engine with automated computer-monitored operation and emissions controls

- Combines vapor extraction and contaminant vapor destruction in a single technology
- Uses a modified automobile engine with automated computer-monitored operation and emissions controls
- Catalytic converter completes fuel oxidation

- Combines vapor extraction and contaminant vapor destruction in a single technology
- Uses a modified automobile engine with automated computer-monitored operation and emissions controls
- Catalytic converter completes fuel oxidation
- Remote monitoring options

On-board computer to monitor engine performance

On-board computer to monitor engine performance

Automated air-fuel ratio control system

- On-board computer to monitor engine performance
- Automated air-fuel ratio control system
- Automated engine shutdown systems

- On-board computer to monitor engine performance
- Automated air-fuel ratio control system
- Automated engine shutdown systems
- Automated fire suppression system

- On-board computer to monitor engine performance
- Automated air-fuel ratio control system
- Automated engine shutdown systems
- Automated fire suppression system
- No external power required

- On-board computer to monitor engine performance
- Automated air-fuel ratio control system
- Automated engine shutdown systems
- Automated fire suppression system
- No external power required
- Remote monitoring/operation capability

ICE Technology-Performance Specifications

Feature	V2C	V3	V4
Max. Hydrocarbon Destruction Rate	12 lbs/hr	35 lbs/hr	70 lbs/hr
Destruction Efficiency for TVH / BTEX	>99%	>99%	>99%
Engine Size	140 cid	460 cid	920 cid (2 x 460)
Max. Vapor Flow Rate	25 scfm	70 scfm	140 scfm
Max. Vacuum (Inches of M ercury / Water)	20 / 270	20 / 270	20 / 270
Soil Gas Hydrocarbon Concentration (ppmV as gasoline) required to eliminate supplemental fuel use	30,000	30,000	30,000

Soil vapor extraction flow rate dependent on site conditions

- Soil vapor extraction flow rate dependent on site conditions
- Auxiliary fuel required (propane or natural gas) below optimum influent TVH vapor concentrations

- Soil vapor extraction flow rate dependent on site conditions
- Auxiliary fuel required (propane or natural gas) below optimum influent TVH vapor concentrations
- Bimonthly (twice per month) maintenance required

- Soil vapor extraction flow rate dependent on site conditions
- Auxiliary fuel required (propane or natural gas) below optimum influent TVH vapor concentrations
- Bimonthly (twice per month) maintenance required
- Can treat only low concentrations of chlorinated hydrocarbons

Discharge Requirements

Site	Average Daily TVH Emissions	Discharge Limitations	
Davis-Monthan AFB, Arizona	0.70 lb/day	2.4 lb VOCs/day	
Luke AFB, Arizona	0.22 lb/day	3.0 lb VOCs/day	
Bolling AFB, DC	0.84 lb/day	1.0 lb VOCs/day	
Williams AFB, Arizona	1.28 lb/day	3.0 lb VOCs/day	

Site Descriptions

Site	Geology	Depth to Groundwater	<i>Maximum Soil TPH Concentration Range</i>	Initial Estimated Contaminated Soil Volume	Initial Influent Vapor TVH Concentration
Davis- Monthan AFB, Arizona	Intermixed fine and coarse - grained deposits	300 ft bgs	11,000 mg/kg (TRPH)	220,000 yd ³	43,000 ppmv
Luke AFB, Arizona	Intermixed fine and coarse - grained deposits	320 ft bgs	12,000 mg/kg	9,300 yd ³	38,500 ppmv
Bolling AFB, DC	Intermixed fine and coarse - grained deposits	20 ft bgs	42,000 mg/kg	43,000 yd ³	123,000 ppmv
Williams AFB, Arizona	Fine-grained subunits intermixed with coarse-grained beds	200 ft bgs	35,000 mg/kg	100,000 yd ³	140,000 ppmv

Site Descriptions (cont.)

SiteAverage Daily TVHRemoval RateWeighted AverageInfluent TVHConcentrationsDavis-Montha

ICE Performance

Air Emissions

Cost of Treatment

29

Full-Scale Performance

Over 500,000 Pounds of Jet Fuel removed in 240 days

Full-Scale Performance

- Over 500,000 Pounds of Jet Fuel removed in 240 days
- 99.9% Destruction Consistently Achieved

Full-Scale Performance

- Over 500,000 Pounds of Jet Fuel removed in 240 days
- 99.9% Destruction Consistently Achieved
- No exceedance of 2.4 lb/day air emissions limit

Weekly system checks

Weekly system checksMonthly engine service

- Weekly system checksMonthly engine service
- Monthly emissions sampling

Weekly system checks (Recommended)
Bimonthly engine service
Monthly emissions sampling
Propane delivery

ICE technology easily integrated with traditional SVE systems

Conclusions

ICE technology easily integrated with traditional SVE systems

Capable of achieving stringent discharge limitations (> 99.9% destruction efficiency)

Conclusions

- ICE technology easily integrated with traditional SVE systems
- Capable of achieving stringent discharge limitations (> 99.9% destruction efficiency)
- Cost per pound of TVH removed: \$0.04 to \$0.46

AFCEE Final Conclusion

"....ICE technology is similar to that of thermal and catalytic oxidation when influent concentrations range between 3,000 to 5,000 ppmv TVH. Above these concentrations, ICE technology becomes more cost-effective."*

* Excerpt from: "Final Comprehensive Technical Report for the Evaluation of Soil Vapor Extraction and Treatment Using Internal Combustion Technology", the Air Force Center For Environmental Excellence (AFCEE) Technology Transfer Division, July 1998 (Recommendations Section)

Contact Information

Remediation Service, Int'l 4835 Colt Street, Unit D Ventura, CA 93003

email: rsi@rsi-save.com www.rsi-save.com Tel. 805-644-8382 Fax 805-644-8378

